目前不清退的交易所推荐:
1、全球第二大交易所OKX欧意
国区邀请链接: https://www.trjorcyvqk.com/zh-hans/join/1837888 币种多,交易量大!
国际邀请链接:https://www.okx.com/join/1837888 注册简单,交易不需要实名,新用户能开合约,币种多,交易量大!
2、老牌交易所比特儿现改名叫芝麻开门 :https://www.gatexx.net
/signup/XgRDAQ8?ref_type=103? 网页端使用邮箱注册(支持QQ邮箱),注册成功之后务必在网页端完成 手机号码绑定,大陆号码输入+086即可 ,实名认证。推荐在APP端实名认证初级+高级更方便上传。网页端也可以实名认证。
全球最大交易所币安,国区邀请链接:https://accounts.binance.com/zh-CN/register?ref=16003031 ?币安支持币种多,交易安全!注册不了IP地址用香港,居住地选香港,认证照旧,邮箱推荐如gmail、outlook。
TraderWagon币安带单:https://www.traderwagon.com/zh-CN/register?ref=zoh4gfu
币安带单邀请码:zoh4gfu
导语
本文将介绍量子计算机与常规计算机的差别,阐述前者对加密货币和数字基础架构带来的风险。
不对称加密与互联网安全
公钥可以随意共享,经其加密的信息只能由相应的私钥解密,确保信息只对指定接收方开放。
目前,大部分生成密钥对的现代算法均以已知的数学陷门函数为基础。破解这些陷门函数需要耗费巨大的算力,旷日持久。即使是目前最强大的计算机,也需要花费大量的时间执行计算。
然而,如果量子计算机研发成功,情况将有极大改观。为了深入理解量子计算机为何如此强大,首先要弄懂常规计算机的运作原理。
经典计算机
我们目前所知的计算机可称为“经典计算机”。经典计算机的运算按顺序执行,一项运算任务执行完毕,下一项才可以开始。原因是经典计算机的内存必须遵守物理定律,状态只能是0或1(关闭或开启)。
通过各种硬件和软件方法,计算机能够拆解复杂运算,最终提高效率。然而,本质还是无法改变。运算任务必须按序逐一进行。
我们举例分析:计算机需要猜出一个4位密钥。这4位的状态可能是0或1。共有16种可能,如下表所示:
经典计算机需要逐一猜出这16种可能,每次猜测一种。这好比使用16把钥匙开锁,每把钥匙都需要试一次。如果第一把打不开,就尝试下一把,直至开锁为止。
随着密码长度增加,组合数量呈指数级增长。在上例中,如果将密钥长度增至5位,相关组合会有32种。增至5位,则会有64种。增至256字节,组合数量接近于可观测宇宙内的原子估量。
然而,经典计算机的运算速度只能呈线性增长。运算速度加倍只能让特定时间内的猜测次数翻一番,这种线性增长远远落后于组合数量的指数级增长。
如此看来,经典计算机无法威胁到加密货币和互联网基础架构使用的不对称加密。
量子计算机
有一类计算机正处于早期开发阶段。技术成熟后,破解上例中的问题简直易如反掌——这就是量子计算机。它基于量子力学理论中阐述的基本原理,聚焦亚原子粒子的行为。
在经典计算机中,信息以“位元”表示。位的状态可以是0或1。量子计算机也有相应的单位——量子位元。它是量子计算机的基本信息单位。与位元相同的是,量子位元的状态可以是0或1。然而,量子力学特有的现象决定了,量子位元的状态可以同时为0和1。
正因如此,众多高校与私企积极参与量子运算的研发。他们投入大量时间与资金,希望攻克该领域的抽象理论与实际工程问题,突破人类科技前沿。
然而,量子计算机也有“副作用”:量子运算能够轻松破解不对称加密的基础算法,从根本上危及所有依赖不对称加密的系统。
我们回到上一节的4位密钥破解示例。理论上讲,一台4位元量子计算机能够同时试验16种组合,执行单次运算即可完成任务。在本次运算中,找到正确密钥的概率为100%。
抗量子密码学
量子运算技术可以轻松突破现代数字基础架构的密码学防线,就连加密货币也不能幸免。
从个人用户到政府与跨国企业,全世界的安保、运营和通信都会受到波及。当然,研发机构与人员不会“坐以待毙”,正在紧锣密鼓地调查和开发应对措施。能够抵御量子计算机的加密算法称为“抗量子加密算法”。
从根本上看,只需增加密钥长度,我们便可通过对称加密技术轻松降低量子计算机破解密钥的风险。为了规避在公共渠道共享密钥的安全隐患,不对称加密让对称加密边缘化,逐渐取而代之。然而,量子计算的发展可能让后者重新得到重视。
在公共渠道共享公共密钥的安全问题有望因量子密码学得到解决。反窃听领域已经逐渐取得进展。利用开发量子计算机的相同原理,我们可以检测到公共渠道的窃听者,判断共享的对称密码是否遭到第三方的调阅或篡改。
量子计算机和比特币挖矿
总结
随着量子计算机不断发展,不对称加密受到冲击似乎只是时间问题,我们暂且不必过虑,这个领域还有庞大的理论和工程课题有待攻克。
信息安全即将面临巨大威胁,大家理应未雨绸缪,积极应对未来的攻击。幸运的是,许多人正在研究如何为现有系统部署应对方案。从理论上将,这些对策会保护重要的基础架构,使其免受量子计算机的威胁。
与端到端加密在常用浏览器和信息软件中得到全面应用一样,抗量子标准可以广泛部署于公共领域。标准成型后,加密货币生态系统能够相对轻易地集成最强防御措施,抵御外界的攻击向量。