全球最大交易所币安,国区邀请链接:https://accounts.binance.com/zh-CN/register?ref=16003031 币安注册不了IP地址用香港,居住地选香港,认证照旧,邮箱推荐如gmail、outlook。支持币种多,交易安全!
买好币上KuCoin:https://www.kucoin.com/r/af/1f7w3 CoinMarketCap前五的交易所,注册友好操简单快捷!
目前不清退的交易所推荐:
1、全球第二大交易所OKX欧意
国区邀请链接: https://www.trjorcyvqk.com/zh-hans/join/1837888 币种多,交易量大!
国际邀请链接:https://www.okx.com/join/1837888 注册简单,交易不需要实名,新用户能开合约,币种多,交易量大!
2、老牌交易所比特儿现改名叫芝麻开门 :https://www.gatexx.net
/signup/XgRDAQ8?ref_type=103 注册成功之后务必在网页端完成 手机号码绑定,大陆号码输入+086即可 ,实名认证。推荐在APP端实名认证初级+高级更方便上传。网页端也可以实名认证。
chia 绘图仪 (CUDA / OPENCL)
- chia-plotter-CUDA.Exe
- 6x RTX 3070/1 个绘图 = 10 秒
- chia-plotter-OpenCl.Exe
- 6x AMD 5500 XT / 1 图 = 35 秒
- 下载:
- 教程 PDF 和设置 包含在 .ZIP 文件中
- Chia 绘制 GPU RAM 驱动器一步一步 PDF 文件
- chia-plotter-CUDA-OpenCl.Zip
下载 Windows 版本:
https://satoshidisk.com/pay/CCiJTq
旧版CPU
这是 chia 绘图仪的新实现,它被设计为处理管道,类似于 GPU 的工作方式,只有“核心”是普通的软件 CPU 线程。
因此,这款绘图仪能够充分利用任何存储设备的带宽,只需增加“核心”的数量,即。线程。
用法
检查不和谐以获取支持:https : //discord.gg/rj46Dc5c
对于 并查看 的输出chia keys show
。需要大约 220 GiB 空间,它将处理大约 25% 的所有写入。(例如:’./’、’/mnt/tmp/’)需要大约 110 GiB 空间,理想情况下是一个 RAM 驱动器,它将处理大约 75% 的所有写入。组合 (tmpdir + tmpdir2) 峰值磁盘使用量小于 256 GiB。在!= 1的情况下,您可以在当前绘图完成后按Ctrl-C优雅终止或双Ctrl-c立即终止\
用法:chia_plot [选项…]
-n, –count arg 要创建的图数(默认值 = 1,-1 = 无限)
-r, –threads arg 线程数(默认值 = 4)
-u, –buckets arg 桶数(默认值 = 256)
-v, –buckets3 arg 阶段 3+4 的桶数(默认 = 桶)
-t, –tmpdir arg 临时目录,需要 ~220 GiB (默认 = $PWD)
-2, –tmpdir2 arg 临时目录 2, 需要 ~110 GiB [RAM] (默认 = )
-d, –finaldir arg 最终目录(默认 = )
-p, –poolkey arg 池公钥(48 字节)
-f, –farmerkey arg 农夫公钥(48 字节)
-G, –tmptoggle 替代 tmpdir/tmpdir2 (默认 = false)
--help Print help
用法:chia_plot.GPU [选项…]
chia_plot.GPU [-检查]
[-v] [-gpu] [-gpuId gpuId1[,gpuId2,…]]
[-g g1x,g1y,[,g2x,g2y,…]]
[-t nbThread]
-V:打印版本
-gpu:启用gpu计算
-gpu gpuId1,gpuId2,…:要使用的 GPU 列表,默认为 0
-g g1x,g1y,g2x,g2y, …: 指定 GPU(s) 内核网格大小,默认为 8*(MP number),128
-T threadNumber:指定CPU线程数,默认为核心数
-nosse:禁用 SSE 哈希函数
-l:列出启用 cuda 的设备
-check:检查 CPU 和 GPU 内核与 CPU
下载 Windows 版本:
https://github.com/achow1o1/chia-plotter-CUDA-OpenCl
<threads>
如果您有足够的内核,请确保启动,默认值为 4。根据阶段将启动更多线程,该设置只是一个乘数。
RAM 使用量取决于<threads>
和<buckets>
。使用 256 个存储桶的新默认值,每个线程最多约为 0.5 GB。
Linux 上的 RAM 磁盘设置
sudo mount -t tmpfs -o size=110G tmpfs /mnt/ram/
注意:RAM 磁盘至少需要 128 GiB 系统 RAM。
结果
在具有 256GB RAM 和 3x800GB SATA SSD RAID0的双 Xeon (R) E5-2650v2 @ 2.60GHz R720 上,使用 110G tmpfs 用于<tmpdir2>
:
Number of Threads: 16
Number of Buckets: 2^8 (256)
Working Directory: /mnt/tmp3/chia/tmp/
Working Directory 2: /mnt/tmp3/chia/tmp/ram/
[P1] Table 1 took 17.2488 sec
[P1] Table 2 took 145.011 sec, found 4294911201 matches
[P1] Table 3 took 170.86 sec, found 4294940789 matches
[P1] Table 4 took 203.713 sec, found 4294874801 matches
[P1] Table 5 took 201.346 sec, found 4294830453 matches
[P1] Table 6 took 195.928 sec, found 4294681297 matches
[P1] Table 7 took 158.053 sec, found 4294486972 matches
Phase 1 took 1092.2 sec
[P2] max_table_size = 4294967296
[P2] Table 7 scan took 15.5542 sec
[P2] Table 7 rewrite took 37.7806 sec, dropped 0 entries (0 %)
[P2] Table 6 scan took 46.7014 sec
[P2] Table 6 rewrite took 65.7315 sec, dropped 581295425 entries (13.5352 %)
[P2] Table 5 scan took 45.4663 sec
[P2] Table 5 rewrite took 61.9683 sec, dropped 761999997 entries (17.7423 %)
[P2] Table 4 scan took 44.8217 sec
[P2] Table 4 rewrite took 61.36 sec, dropped 828847725 entries (19.2985 %)
[P2] Table 3 scan took 44.9121 sec
[P2] Table 3 rewrite took 61.5872 sec, dropped 855110820 entries (19.9097 %)
[P2] Table 2 scan took 43.641 sec
[P2] Table 2 rewrite took 59.6939 sec, dropped 865543167 entries (20.1528 %)
Phase 2 took 620.488 sec
Wrote plot header with 268 bytes
[P3-1] Table 2 took 73.1018 sec, wrote 3429368034 right entries
[P3-2] Table 2 took 42.3999 sec, wrote 3429368034 left entries, 3429368034 final
[P3-1] Table 3 took 68.9318 sec, wrote 3439829969 right entries
[P3-2] Table 3 took 43.8179 sec, wrote 3439829969 left entries, 3439829969 final
[P3-1] Table 4 took 71.3236 sec, wrote 3466027076 right entries
[P3-2] Table 4 took 46.2887 sec, wrote 3466027076 left entries, 3466027076 final
[P3-1] Table 5 took 70.6369 sec, wrote 3532830456 right entries
[P3-2] Table 5 took 45.5857 sec, wrote 3532830456 left entries, 3532830456 final
[P3-1] Table 6 took 75.8534 sec, wrote 3713385872 right entries
[P3-2] Table 6 took 48.8266 sec, wrote 3713385872 left entries, 3713385872 final
[P3-1] Table 7 took 83.2586 sec, wrote 4294486972 right entries
[P3-2] Table 7 took 56.3803 sec, wrote 4294486972 left entries, 4294486972 final
Phase 3 took 733.323 sec, wrote 21875928379 entries to final plot
[P4] Starting to write C1 and C3 tables
[P4] Finished writing C1 and C3 tables
[P4] Writing C2 table
[P4] Finished writing C2 table
Phase 4 took 84.6697 sec, final plot size is 108828428322 bytes
Total plot creation time was 2530.76 sec
如何验证
为确保绘图有效,您可以使用chiapos 中的ProofOfSpace
工具:
git clone https://github.com/Chia-Network/chiapos.git
cd chiapos && mkdir build && cd build && cmake .. && make -j8
./ProofOfSpace check -f plot-k32-???.plot [num_iterations]
未来的计划
我确实有一些 GPU 挖矿的历史,早在 2014 年,我就第一个开源了 XPM GPU 矿机,它的效率比 CPU 矿机高出大约 40 倍。请参阅我的其他回购。
因此,我将添加 OpenCL 支持以进一步加快绘图仪的速度,从而减轻 CPU 的大部分负载,这只是时间问题。
依赖关系
- cmake (>=3.14)
- libsodium-dev
安装
Windows
stotiks构建的二进制文件可以在这里找到:https : //github.com/stotiks/chia-plotter/releases
Arch Linux
首先,从 pacman 安装依赖项:
sudo pacman -S cmake libsodium gmp gcc10
然后,获取并编译项目:
# Checkout the source
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd chia-plotter
# Use gcc10 during build
export CC=gcc-10
export CXX=g++-10
# Init submodules
git submodule update --init
# Compile
./make_devel.sh
./build/chia_plot --help
CentOS 7
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd chia-plotter
git submodule update --init
sudo yum install epel-release -y
sudo yum install cmake3 libsodium libsodium-static -y
ln /usr/bin/cmake3 /usr/bin/cmake
# Install a package with repository for your system:
# On CentOS, install package centos-release-scl available in CentOS repository:
sudo yum install centos-release-scl -y
# Install the collection:
sudo yum install devtoolset-7 -y
# Start using software collections:
scl enable devtoolset-7 bash
./make_devel.sh
./build/chia_plot --help
清除 Linux
sudo swupd update
sudo swupd bundle-add c-basic devpkg-libsodium git wget
echo PATH=$PATH:/usr/local/bin/ # for statically compiled cmake if not already in your PATH
# Install libsodium
cd /tmp
wget https://download.libsodium.org/libsodium/releases/LATEST.tar.gz
tar -xvf LATEST.tar.gz
cd libsodium-stable
./configure
make && make check
sudo make install
# Checkout the source and install
cd ~/
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd ~/chia-plotter
git submodule update --init
./make_devel.sh
./build/chia_plot --help
Ubuntu 20.04
sudo apt install -y libsodium-dev cmake g++ git
# Checkout the source and install
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd chia-plotter
git submodule update --init
./make_devel.sh
./build/chia_plot --help
二进制文件最终会在build/
,您可以自由地将它们复制到其他地方(在同一台机器或类似的操作系统上)。
Debian 10(“破坏者”)
确保将 buster-backports 添加到您的 sources.list 否则安装将失败,因为旧的 cmake 版本。请参阅debian backport 文档以供参考。
# Install cmake 3.16 from buster-backports
sudo apt install -t buster-backports cmake
sudo apt install -y libsodium-dev g++ git
# Checkout the source and install
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd chia-plotter
git submodule update --init
./make_devel.sh
./build/chia_plot --help
二进制文件最终会在build/
,您可以自由地将它们复制到其他地方(在同一台机器或类似的操作系统上)。
苹果系统
首先,您需要安装一个名为Brew和Xcode或CommandLineTools的包管理器。
# Alternative way to download CommandLineTools on Terminal:
xcode-select --install
brew install libsodium cmake git autoconf automake libtool wget
# If you downloaded Xcode run these:
sudo ln -s /usr/local/include/sodium.h /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/include/
sudo ln -s /usr/local/include/sodium /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/include/
# If you downloaded CommandLineTools run these:
sudo ln -s /usr/local/include/sodium.h /Library/Developer/CommandLineTools/usr/include
sudo ln -s /usr/local/include/sodium /Library/Developer/CommandLineTools/usr/include
brew link cmake
在应用以下命令之前确认您的 Mac 上有哪个目录
wget https://raw.githubusercontent.com/facebookincubator/fizz/master/build/fbcode_builder/CMake/FindSodium.cmake -O /usr/local/opt/cmake/share/cmake/Modules/FindSodium.cmake
或者
wget https://raw.githubusercontent.com/facebookincubator/fizz/master/build/fbcode_builder/CMake/FindSodium.cmake -O /opt/homebrew/Cellar/cmake/3.20.3/share/cmake/Modules/FindSodium.cmake
git clone https://github.com/madMAx43v3r/chia-plotter.git
cd chia-plotter
git submodule update --init
./make_devel.sh
./build/chia_plot --help
如果出现最大打开文件限制错误(默认操作系统设置为 256,对于默认存储桶大小来说太低256
),请在启动绘图仪之前运行此设置
ulimit -n 3000
此文件限制更改只会影响当前会话。
在 Docker 容器中运行
在某些设置和场景中,在 Docker 容器内运行绘图仪可能很有用。这chia-plotter
在 Windows 中运行时可能很有用。
为此,请在您的计算机上安装 Docker,然后运行以下命令:
docker run \
-v <path-to-your-tmp-dir>:/mnt/harvester \
-v <path-to-your-final-dir>:/mnt/farm \
odelucca/chia-plotter \
-t /mnt/harvester/ \
-d /mnt/farm/ \
-p <pool-key> \
-f <farm-key> \
-r <number-of-CPU-cores>
?您可以在图像名称 (
odelucca/chia-plotter
)后提供任何绘图仪参数
在 Linux 基准测试中,我们发现在 Docker 中运行对性能的影响仅比在本机操作系统中运行高 5%。
对于 Windows 用户,您应该检查您的 Docker 配置是否有任何 RAM 或 CPU 限制。由于 Docker 在 HyperV 内运行,这可能会限制您的硬件使用。在任何情况下,您都可以使用-m
标志(在docker run
命令之后)设置 RAM 限制。
关于Docker中的多线程
在 Windows 中运行时,您可能需要正确配置 Docker 以允许多 CPU。您可以按照本文进行操作
简而言之,您也可以将--cpus
标志传递给您的docker run
命令以获得相同的结果。
因此,例如,以下命令:
docker run \
-v <path-to-your-tmp-dir>:/mnt/harvester \
-v <path-to-your-final-dir>:/mnt/farm \
-m 8G \
--cpus 8 \
odelucca/chia-plotter \
-t /mnt/harvester/ \
-d /mnt/farm/ \
-p <pool-key> \
-f <farm-key> \
-r 8
将使用 8 个 CPU 和 8GB 的 RAM 运行您的绘图仪。
已知的问题
- 不使用 gcc-11 编译,使用较低版本。
- 至少需要 cmake 3.14(因为 bls-signatures)